Textversion des Videos

Transkript Bioelektrizität in Zellen – Entstehung und Bedeutung

Woran denkst du bei dem Wort “Elektrizität”? An Steckdosen und elektrische Geräte? In diesem Video möchte ich dir zeigen, dass Elektrizität nicht nur in der Physik und der Technik eine grundlegende Rolle spielt, sondern auch in jeder tierischen Zelle.

Wenn es um Elektrizität im Zusammenhang mit Lebewesen geht, spricht man von Bioelektrizität. Es handelt sich dabei um ein komplexes Thema. In diesem Film wirst du mit den Grundlagen vertraut gemacht.

Bereits im 18. Jahrhundert entdeckte der italienische Arzt Galvani, dass sich die Muskeln in präparierten Froschschenkeln unter dem Einfluss von Elektrizität zusammenziehen. Seitdem wurde die Elektrizität im Zusammenhang mit tierischen Lebewesen diskutiert und erforscht.

Heute weiß man, dass jede tierische Zelle gegenüber ihrer Umgebung elektrisch geladen ist. Bioelektrizität spielt insbesondere in den Sinneszellen der Sinnesorgane und den Nervenzellen eine wichtige Rolle. Sie reagieren auf elektrische Impulse und erzeugen selbst welche.

Den Begriff “Ion” hast du sicher schon häufig gehört. Weißt du denn aber genau, was darunter zu verstehen ist? Da er für das Verständnis der Bioelektrizität sehr wichtig ist, möchte ich den Begriff kurz erklären.

Ein Ion ist ein elektrisch geladenes Atom oder Molekül. Es entsteht, wenn ein Atom oder Molekül einen Elektronenüberschuss oder -mangel hat. Es ist bei einem Elektronen-Überschuss negativ geladen und wird Anion genannt. Bei einem Elektronen-Mangel ist es positiv geladen und heißt Kation.

Für viele Vorgänge, wie z.B. die Erregungsleitung in Nervenzellen, ist es wichtig, dass Strom fließt. Das bedeutet, dass sich Ionen bewegen. Dies kann nur geschehen, wenn Anionen und Kationen ungleichmäßig verteilt werden. Eine Ladungstrennung muss also erfolgen. In tierischen Zellen trennt die Zellmembran die Ladungen. So entsteht ein positiver und negativer Pol. Elektrische Spannung, auch Potenzialdifferenz genannt, ist die Folge.

Entsteht eine Potenzialdifferenz an einer Membran, so spricht man von Membranpotenzial. Das Membranpotenzial kann aufrecht erhalten werden, da die Membran fast undurchlässig für Ionen ist. Ionen müssen die Membran über Kanäle passieren. Diese sind jedoch nicht immer geöffnet. Außerdem lässt jeder Kanal nur bestimmte Ionen passieren. Strom fließt in der Zelle und an der Membran also nur kontrolliert in bestimmten Situationen. Wie aber sind Ionen in der tierischen Zelle verteilt?

Alle tierischen Zellen weisen im Inneren eine andere Konzentration an Ionen auf als außerhalb. Im Innen befinden sich wenige Natrium- und Chloridionen, aber viele Kaliumionen und organische Anionen. Außen ist es umgekehrt. Die negativen und positiven Ladungen sind ungleich verteilt und ziehen sich über die Membran gegenseitig an.

Für jeden Ionentyp besteht ein Konzentrationsgefälle entweder von innen nach außen oder umgekehrt. Es kommt zu einer Spannung, dem Membranpotenzial. Die Ionenkanäle sind normalerweise geschlossen. Nur Kaliumionen können von außen nach innen gelangen. Allerdings erfolgt trotzdem kein vollständiger Konzentrationsausgleich.

An einem bestimmten Punkt ist die vom Konzentrationsgefälle auf die Kaliumionen wirkende Kraft ebenso groß wie die Anziehung durch die zahlreichen Chloridionen außen. Es kann also weiterhin Spannung gemessen werden. Das resultierende Gleichgewicht aus den beiden Faktoren des Ladung- und Konzentrationsausgleiches, wird als Gleichgewichtspotenzial bezeichnet.

Nun möchte ich dir am Beispiel der Nervenzelle kurz erklären, welche Bedeutung das Membranpotenzial und dessen kurzzeitige Veränderung haben.

Ein elektrischer Impuls führt zur kurzzeitigen Öffnung von Ionenkanälen, es kommt zu einem verstärkten Ionenfluss. Das Membranpotenzial ändert sich kurzzeitig. Auf diese Weise werden von den Sinnesorganen aufgenommene Reize in Form von elektrischen Impulsen an das Zentrale Nervensystem weitergeleitet. Über die Veränderung der Ionenkonzentration und damit des Membranpotenzials werden zahlreiche Vorgänge in tierischen Zellen gesteuert.

Du hast nun gelernt, dass jede tierische Zelle elektrisch geladen ist. Über die Zellmembran erfolgt eine Ladungstrennung und damit eine ungleichmäßige Verteilung der Anionen und Kationen. So entsteht eine Potenzialdifferenz, die an der Membran auch Membranpotenzial genannt wird.

Über Ionenkanäle, die geschlossen oder geöffnet sein können, erfolgt die Kontrolle des Membranpotenzials. Eine kurzzeitige Veränderung des Membranpotenzials führt z.B. in der Nervenzelle dazu, dass Informationen an das Zentrale Nervensystem weitergeleitet werden. Elektrizität hat also nicht nur etwas mit Steckdosen und elektrischen Geräten zu tun, sondern ist eine wichtige Grundlage dafür, dass dein Körper und jede tierische Zelle ihre Funktion ausüben kann.

Informationen zum Video
10 Kommentare
  1. Default

    Danke für die Antwort, hab's jetzt verstanden :)

    Von Annatheresa97, vor etwa einem Jahr
  2. Serpil

    Hallo Anna,
    zunächst einmal finde ich es super, dass sich deine erste Frage von selbst geklärt hat. :) Zur nächsten Frage: Als Membranpotenzial wird die Potenzialdifferenz der Zelle bezeichnet. Diese kommt zustande, da die Zellmembran nicht gleichermaßen für alle Ionen durchlässig ist. Somit stellt sie eine isolierende Schicht dar und bewirkt eine Ungleichverteilung der Ionen. Das Membranpotenzial ist so gesehen ein Überbegriff, worunter das Ruhepotenzial und das Aktionspotenzial fallen. Man kann hier also nicht wirklich von einer Reihenfolge sprechen. :)
    Ist das verständlich?

    Von Serpil Kilic, vor etwa einem Jahr
  3. Default

    Folgt dem Mebranpotenzial zeitlich das Ruhepotenzial und dann das Aktionspotenzial?

    Von Annatheresa97, vor etwa einem Jahr
  4. Default

    Hat sich erledigt Danke trotzdem:)

    Von Annatheresa97, vor etwa einem Jahr
  5. Default

    Sind diese "Balken", die Anionen von Kationen trennen und auf der Zellmembran liegen die Ionenkanäle? :)

    Von Annatheresa97, vor etwa einem Jahr
  1. Default

    Vielen Dank, jetzt hab ich das auch verstanden! Bin zwar erst in der neunten, aber wir haben das Thema irgendwie jetzt schon und leider auch eine Lehrerin, die das ganze nicht wirklich erklären kann... ;) Naja, zum Glück bin ich noch vor dem morgigen Test auf dieses Video gestoßen!

    Von Lea 25, vor etwa einem Jahr
  2. Default

    Sehr verständliches, schön strukturiertes und aufgearbeitetes Video. Top :)

    Von Fritz Kinateder, vor mehr als einem Jahr
  3. Jan

    Hallo Merabell,
    ein Potential kann nur dann entstehen, wenn ein Konzentrationsunterschied an Ionen und somit an Ladungen an der Membran besteht.

    Von Jan Ruppe, vor mehr als 2 Jahren
  4. Default

    Ich dachte es findet kein Konzentrationsausgleich statt?
    Wie kann dann ein Gleichgewichtspotenzial entstehen..?
    Sonst ein sehr gutes Video! :)

    Von Merabell A., vor mehr als 2 Jahren
  5. Default

    Ich dachte es findet kein Konzentrationsausgleich statt?
    Wie kann dann ein Gleichgewichtspotenzial entstehen..?
    Sonst ein sehr gutes Video! :)

    Von Merabell A., vor mehr als 2 Jahren
Mehr Kommentare